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Abstract 
High performance aircraft of the future will be 

designed lighter, more maneuverable, and operate over 
an ever expanding flight envelope. One of the largest 
differences from the flight control perspective between 
current and future advanced aircraft is elasticity. Over 
the last decade, dynamic inversion methodology has 
gained considerable popularity in application to highly 
maneuverable fighter aircraft, which were treated as 
rigid vehicles. This paper explores dynamic inversion 
application to an advanced highly flexible aircraft. 

An initial application has been made to a large 
flexible supersonic aircraft. In the course of controller 
design for this advanced vehicle, modifications were 
made to the standard dynamic inversion methodology. 
The results of this application were deemed rather 
promising. An analytical study has been undertaken to 
better understand the nature of the made modifications 
and to determine its general applicability. This paper 
presents the results of this initial analytical look at the 
modifications to dynamic inversion to control large 
flexible aircraft. 
Introduction 

The advanced aircraft under consideration is a next 
generation supersonic transport aircraft, which due to 
aerodynamic considerations will be long and slender 
and because of economics must be as light as possible. 
These factors contribute to making this aircraft very 
flexible with the first few elastic modes lying within the 
bandwidth of the traditional flight control system. 
Traditionally, any aircraft flexibility that had to be 
addressed directly has been always handled by 
designing a separate structural mode control system to 
augment the standard flight control '. This approach 
while not optimal, has performed adequately in the past 
but does not fulfill the requirements for the new 
generation of advanced aircraft '. The new generation 
of flexible aircraft requires a new integrated approach 
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in order to effectively control elasticity while providing 
the best available performance. 

In order to address this newly defined problem of 
integrated flightlstructural mode control for an 
advanced aircraft, the method of dynamic inversion is 
considered. Over the last decade, dynamic inversion 
methodology has gained considerable popularity in 
application to highly maneuverable fighter aircraft 39 

which makes it a candidate that might benefit the 
advanced highly flexible aircraft of the future. The 
attractiveness of this methodology lies in the fact that 
the inherent nonlinearities of the problem are explicitly 
considered. In other words, a nonlinear control law is 
designed that globally reduces the aircraft dynamics of 
interest into a set of integrators and thus, allows one 
linear controller to provide desired response throughout 
the flight envelope. This eliminates the need for 
extensive linearization of the aircraft model for 
different flight conditions, design of individual 
controllers for each of these conditions, and finally 
performing gain scheduling, which is typically an ad 
hoc and time consuming procedure, to link the 
individual controllers over the flight envelope. 
However, since no methodology is a panacea for 
control design, dynamic inversion has some associated 
issues, such as robustness, stability, and onboard 
aircraft model fidelity that must be carefully 
considered. 

An initial application of dynamic inversion to a 
large flexible aircraft has been made with encouraging 
results '. These results, however, required certain 
modifications to be made to the standard dynamic 
inversion to handle flexibility. The paper discusses 
these modifications and shows analytically how they 
affect the dynamics. The original control design 
problem dealt with a large, complicated model. In 
order to show useful results, the problem has been 
simplified for analytical work while still retaining 
essential characteristics. The simplification involved 
considering short period longitudinal dynamics with a 
single elastic mode and then going through the process 
of dynamic inversion both original and modified 
concept to show the affects on aircraft dynamics due to 
the introduced modifications. The complexity of the 
model was then gradually increased to include more 
dynamics. 
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The paper is organized as follows. The first 
section discusses the standard dynamic inversion results 
as applied to the short period plus an elastic mode linear 
equations of motion. The following section then deals 
with the modification introduced into the dynamic 
inversion that is the main result of this paper. The 
subsequent sections address the increasing complexity 
of the model by introducing full longitudinal dynamics 
and additional flexible modes respectively. The final 
section explores how uncertainty introduced into elastic 
mode frequency and damping, as was done in reference 
6, influences closed loop dynamics that are found in the 
traditional rigid body frequency range. The conclusions 
that were drawn from this work then follow. 

Throughout this paper the analysis considers the 
inner loop of the dynamic inversion only, i.e., the y to 
ydesportion. It is important to note that the nature of 
ydesimpacts the overall closed loop dynamics but will 
not be discussed here. Also, the data plots shown here 
are normalized in order to be publishable. 
Standard Dvnamic Inversion 

The aircraft model used to explore the analytical 
relationships considered in this section has the standard 
short period approximation plus an elastic mode ' that 
is modified to show interaction between rigid and 
flexible body dynamics. The equations are given below 

l o  0 1  

where 77 and i represent the generalized coordinate 
and its derivative, both of which are typically used to 
represent the flexible modal dynamics. The variables 
that are controlled, also subsequently referred to as 
control variable or CV, are pitch rate at the mean and 
the flexible motion at the pilot station, which is given 
by a difference between pitch rate at the pilot station 
(ps) and at a longitudinal mean axis (ma). Since the 
mean axis refers to an imaginary line that approximates 
the middle of a rigid vehicle and does not physically 
exist, it is approximated by a sensor measurement that 
shows the least flexible mode contamination. The pitch 
rate measurement provided by such sensor location is 
referred henceforth as qma. The equation describing the 
control variables is given by 

r w i  

Lrll (2) 

where 4f  is the slope of the mode shape. 
Applying the standard dynamic inversion to a set 

of linear equations in general gives us the following 
results. 

x = Ax+ Bu = Ax+ B((CB)-'( ydes - CAx)] 

=(A-B(CB)- 'CA)x+B(CB)- lYdes  (3) 

- j C c . I : = y = y d e S  

Thus, applying equation 3 to the dynamics described by 
equations 1 and 2 gives the transfer function matrix for 
the closed loop 

(4) 
L 

The closed loop system dynamics from ydes to y are 
given by equation 5. 

where = -$'292 and = 1 

The set of closed loop poles, shown in expression 6 
contains two poles at s=O that correspond to the 
integrators shown in equation 4 plus those coinciding 
with the transmission zeros of the open loop system. 

2 
American Institute of Aeronautics and Astronautics 



AlAA 99-3998 

; 
I 

-1.0 

These are the internal or zero dynamics; one 
corresponding to the vertical velocity w, which is not 
directly controlled in the problem formulation, and the 
other to s=O. So the results are standard as expected 
when exact dynamic inversion is applied to an aircraft. 

However, this methodology works well if the only 
interested is in controlling the dynamics from some 
commanded pitch rate coming from either pilot stick or 
an autopilot command, but it has no effect on 
controlling disturbances or improving robustness to 
model uncertainties that always exist. 
Modified Dvnamic Inversion 

The presence of flexible modes in the close 
proximity to rigid body dynamics that are typically 
controlled raises a new set of challenges for the control 
engineer in utilizing dynamic inversion. In order to 
design a successful controller, the method of dynamic 
inversion must be modified to influence the damping of 
elastic modes so that the response to system 
disturbances and model uncertainties is acceptable. The 
analytical description of a simplified version of such a 
modification is the main result of this paper. 

The modification to dynamic inversion is 
introduced in the forward section of the dynamic 
inversion feedback loop and is illustrated in figure 1. 
Since the problem formulation is MIMO, a matrix W is 
introduced to limit the frequency range of the dynamics 
that are passed to the inverse of the effective control 
effectiveness matrix that produces actuator commands. 
In reference 6,  the matrix W is diagonal consisting of 
second-order filters. 

. . . .Q . . .*. . .d o*. . . 4.. . . . . .a o *  
t b=1/8 
Q b=1/10 
t b=1/12.5 
Q b=1/15 * b= 1/20 - 

Figure 1. Modified dynamic inversion 
In order to illustrate just how the described 
modification influences the closed loop dynamics 

several variations of the simplified open loop system 
and W are presented. 

We first start by looking at SISO system dynamics 
and begin with short period dynamics only. Let W 
equal a first order filter. The closed loop dynamics and 
transfer function are then given in equation 7. Note that 
the right side of equation 7 is no longer a pure 
integrator as is the case in equation 4. The filter W in 
the loop introduces another pole-zero pair that 
precludes pole-zero cancellation resulting from the 
standard dynamic inversion. The movement of the 
poles with the changing value of a is illustrated in 
figure 2. For a>l, the non-integrator closed loop 
dynamics are concentrated around open loop poles, as 
follows from equation 7. On the other hand, for acl ,  
the short period dynamics become faster as both non- 
integrator poles move further into the left-half plane. It 
is interesting to note that as l l a  -+ DJ the pole-zero 

1 
cancellation is recovered and - + -. While this 

Ydes 
result may not be particularly interesting when dealing 
with rigid body dynamics, its real value is recognized 
when the flexible mode dynamics are explored. 

1.0 
0 openloop 
x b=50 + b=10 
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1.0 

$ 0 -  
CI 

-1.0. 

Consider a similar SISO system setup, but this time 
dealing with typical second-order flexible mode 
dynamics 

- 
0 openioop 
X b=50 4 

a b=1/5 
- +&IO a 

. . . . ~ . . . . . . . . . . . . . . . . . # . . . . . . , . ~  . 

* b=1/8 
a b=1/10 
4 b= 111 2.5 a 
a b=1/15 4 

@ . 
* b= 1/20 

[ ;] = [ -25i" 3+[ 35 
1 W = -  

bs+l 
V n l l b  

The resulting closed loop system dynamics are again 
altered by the introduction of a filter W. As equation 8 
clearly shows, the damping of the closed loop elastic 
mode is controlled by the time constant of the filter W 
that modifies the standard dynamic inversion 
procedure. The change in the damping and hence the 
movement of the elastic mode dipole is illustrated in 
figure 3. For the values of b>l, the elastic mode dipole 
barely moves from the open loop dynamics. However 
for bel ,  there is a pronounced movement in the poles 
along the line of constant frequency and increasing 
damping for diminishing b. In fact, for b=1117.5, the 
damping becomes supercritical and the elastic mode 
dipole becomes a pair of real poles that approach s=O, 
l/b in the limit and recovering the pole-zero 

1 
cancellation with 7 + -. This observation that an 

addition of a filter into a dynamic inversion loop 
influences damping in a SISO system is carried through 
to a MIMO system where we combine short period and 
elastic mode dynamics. 

Y S 

1 

-2 -1.5 -1 -0.5 0 
Real 

Figure 3. Flexible mode closed loop poles as b 
changes. 

The SISO examples of equations 7 and 8 are 
equivalent to placing unmodeled first order actuator 
dynamics in the dynamic inversion control. One would 
expect that as the actuator bandwidth increases the 

1 - + - , which is precisely the case. 
Ydes 

The combined MIMO system open loop dynamics 
are given by equations 1 and 2. The addition of the 
matrix W into the feedforward loop modifies the results 
of the standard dynamic inversion. Let W be a diagonal 
matrix of first order filters given by equation 9, which 
can also be expressed in state space system as shown. 

jdes - 

Figure 4. Modified dynamic inversion with dynamics 
in the modification matrix W 

The block diagram that illustrates this modification is 
given in figure 4. Combining the modified dynamic 
inversion with the aircraft gives the following set of 
dynamics, expressed in matrix notation and shown in 
equation 10. 

L J  

Clearly equation 10 shows that as expected the 
dynamics of filter W alter the closed loop dynamics. 
After some algebraic manipulation we get a very large 
and messy analytical expression for the closed loop 
poles. In order to understand how first order filter 
matrix influences the dynamic inversion inner loop, it is 
instructive to look at the pole movement while holding 
one of the time constants fixed and changing the other. 
Looking at the numeric values of the closed loop poles, 
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x u  x w  x, x, 0 0 
zu zw z, z, z, zq 
Mu Mw M ,  M, M ,  Mq 

1 0 0  o e  
2 E ,  0 -250 -O 

it becomes immediately apparent that for 
a # 0 and b # 0 two of the six poles are integrators. 
Another pole maintains a value in the neighborhood of 
I/a. However, there are no longer poles coincident 
with open loop transmission zeros, so there is no pole- 
zero cancellation. 

Figures 5 and 6 illustrate the pole movement as the 
filter time constants are varied. In Figure 5, b is fixed 
and a is allowed to vary over the same range as was 
previously shown in figure 2. Notice that short period 
poles move in the manner similar to that observed in the 
SISO short period case, while the flexible mode dipole 
remains essentially fixed in the neighborhood that is 
specified by the given value of b. In fact the movement 
of the faster of the two short period poles is clearly 
visible in the figure. Similar phenomenon is observed 
in figure 6, where a is fixed and b is allowed to vary. 
The short period dynamics remain essentially fixed near 
the origin while the elastic mode dipole travels along 
fixed frequency and increasing damping with 
decreasing value of b. Again this is similar to what has 
been observed in the SISO elastic mode case and shown 
in figure 3. _ _  

l u  

w 

4 

rl 

. . .  . .  I .  

- 

1.0 

$ 
3 

-1.0 

1 .o 

an 
3 ? i o  

-1.c 

b=1/5 '.. '.a.'-,.Q . .  
. 

. .  ,. . ~ . .  _ .  . . . .  0 open loop + a=10 
. 4 a = M  

# a=1/8 . .  

. . . . .  . . , .  . .  . ' . .  . .  
. .  

. .  . .  . . .  
. .  

. . . .  .... 
O Q  . . . .  . . . a .  ..*...d.. ;* . . . .  4 . . . . . . .  @@ 

.._ . . . .  . ' . .  
. , . .  . , . .  . . . .  . . . .  . . . . .  

. .  . .  . .  a a=1/10 

a a=1/15 
# a=1/20 . .  

a=1/12.5 

. . . .  . .  . .  . . . .  
. _: ' ',:'d.: .o  

0 open loop + b=10 

* b=1/8 

. . . . . . . . .  # . . .  

a b=1/5 

a b=i/io 

a b a i 5  
# b=1/12.5 

# b=1/20 

. . .  

a=1/8'.. '.. , . .'- . 6 
';q,"''.. . .  ... : .* . . . . . .  : . . .  . .  

. .  . .  
. .  . .  . .  

. . .  . .  
.ti 

. . .  ..... 
. .4.. . Q o . .  . . . .  4 

... 
. '.. . . . .  

. , . .  . ;. ' .  , .  
, . . _  . . . . .  

. .  . .  . .  
Q 

. . . .  .: . . 1 ' .  . , . . . .  . .  
..... '... . e 

-2 -1.5 -1 -0.5 0 
Real 

Figure 6. Closed loop poles for short period + 1 
flexible mode w/ b changing, a=1/8. 

Adding Complexity 
Consider the full longitudinal model with a single 

flexible mode. Retaining the same control variables as 
used above in equation 2, the system dynamics are 
given by equation 11 

Following the same process as before, the direct 
dynamic inversion produces results seen in equation 4. 
The closed loop poles are given in expression 12 

f u - w dynamics 

0, 0, 0, 0 
The closed loop poles are a set comprised of 4 poles of 
internal dynamics that coincide with open loop 
transmission zeros of the system in equation 11 and of 
two poles at s=O which correspond to the integrators 
found in equation 4. The closed loop system dynamics 
from ydes to y are given by equation 13. From this 
equation it is apparent that the controlled variables are 
independent of the u-w dynamics. Furthermore, the 
steady-state system internal dynamics are described by 
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- 
li 
w 
4 
s 
ii 

L % 

motion on the u-w-q-manifold. 

.a 

. .  . .  . .  
'. '. .e:. Q 

. .  . .  - 

X u  X ,  X q  X e  Xfi Z, 
Z,  Z, Z,  Z e  Z$ Z,, 
0 0 0 0 0 0  
0 0 1 0 0 0  
0 0 0 0 0 0  
0 0 0 0 1 0  

- - - -  

.4 

L J 

y$" + ( My2 + @fEy2)yp [ = [ AqYEy2 yp 
where My2 = -qYi?y2 and = 1 

. . . .  ' . .  
. . ' . .  . . .  . .  

. . . . .  

. .  b=1/5 ' . .  '. . . . .  . .  . .  - 
. . . .  . .  . . . . .  . .  ... ..... . .  

0 openloop 

X b=50 
+ b=10 

a b=1/5 
* b=1/8 

. . . .  . . .  . .  . . .  
. . . .  0 : . .  . .  

:. * ; _. . : 

' :. . . _  
Q."  . . . . . . . .  

. . .  

..... . . . . .  
. . . . .  

. .  . .  . . .  
. . .  . .  . .  . .  . .  . .  

. .  0 open loop 
X a=50 . . . . .  . . .  . . .  . . .  + a=10 

a a=1/5 _' ' 0 c . .  
t a=1/8 

. .  . .  
, .. : d  - a a=1/10 

t a=1/12.5 

Q a=1/15 

t a=1/20 

. . .  . . . .  . . . . .  
' . ,  a"., '._ '; i 

. . '  . .  
' .  . :. 

. . .  ~. . .  
. . , . .  . ' _ . .  

..... . .  . . . .  . .  * .  . . . .  . a . .  +. .Q. *  . Q . .  . . . * .  .* . 

..... . .  . . . . . .  . .  . . . .  . . . . .  . . .  . .  . .  . . .  . . .  . . . . .  
b=1/12.5 ;*,;' ,.' j 1 - 

. . . .  . . .  , 

; . ,  -1.2 ' 
0 

Figure 7. Longitudinal + 1 mode w/ a changing. 

-2 -1.5 -1 -0.5 
Real 

If we introduce modification to the dynamic 
inversion as shown in the earlier section, the result is no 
longer a clean separation as has been observed with 
short period approximation and an elastic mode. The 
closed loop A matrix structure resembles the more fully 
populated one of the open loop (eqn. 11) rather than the 
nice decoupled one of the closed loop (eqn. 13). The 
pole movement associated with changing time constants 
of the transfer matrix W is shown in figures 7 and 8. 
The closed loop poles structure of 
(*, *, *, *, *, *, 0, 0} applies to both of the figures. 

For changing a,  time constant of the measured 
mean axis pitch rate, there is the expected movement of 
the longitudinal poles that has been previously seen in 
figures 2 and 5, but there is also some minor movement 
of the flexible mode as illustrated in figure 7. When the 
value of b is allowed to change, as shown in figure 8, 
the flexible mode follows the now familiar pattern 
witnessed in figures 3 and 6 of changing damping along 
a constant frequency. However, there is also movement 
of longitudinal poles, the extent of which depends on 

1.2 I 

g o . . +  . . . . .  
Y I 

. . _.. . .  .a *. . . . . . . . . . . . .  * ..... 

-.8 

-1.2 41 

l : i  .4 

' '. @ '. *'.g ', : 
a. . . . . .  

a . . . . . . .  . . . .  

Q b=1/10 

* b=1/12.5 

Q b=1/15 
t b=1/20 

... * . . . .  . . . .  . . , .  . _ .  
. . . . .  

. . . . .  . . . . . .  
. . .  . .  . . .  

. . .  

-1.2 ' J 
0 -0.5 -1 

Figure 8. Longitudinal + 1 mode w/ b changing. 

-1.5 
Real 
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. .  . . .  . . .  . . ;. - . . . . . .  . . . . .  . . . .  . . .  - 0 openloop 
. . .  

X a=50 . .  + a=10 .:' .*; 8 - 
. a a=1/5 ... ... q@ . 

- f a=1/8 

the value of a .  This begins to constrain some of the 
decoupling freedom in our control design. Taking 
another step towards a real flexible aircraft, an 
additional level of complexity is introduced in the 
following section. 
Additional flexible modes 

Consider the longitudinal equations of motion 
shown in equation 11, which are augmented by 3 
additional flexible modes with all the associated 
interdependencies of rigid and elastic dynamics as well 
as inter mode dependencies. Thus, the system 
dynamics consist of 12 states and retain the same 
control variables as have been used throughout. In the 
now familiar process, we keep one of the time constants 
in W fixed while varying the other. The results are 
illustrated in figures 9 and 10. For a changing a with 
constant b, figure 9 shows the movement of short 
period poles while all but one flexible mode remain 
clustered near their open loop positions. The pole 
corresponding to the primary fuselage bending mode 

1.6 - 
. 

1.2. 

.8 - 

.4 - 

1.6 I 

'. '. * - 4 a=1/10 
f a=1/12.5 
Q a=1/15 
# a=1/20 

. . . .  .4.). 'i.8 . 
. . .  . . . .  

. : . .  . . . . .  
. . . . . .  - 

has migrated away from its open loop position to a 
higher damping. When b is changing while a is held 
constant, the pole movement, illustrated in figure 10, is 
similar to the one observed in the prior section. The 
poles of the flexible modes that are not primarily 
fuselage modes, modes 1, 3, and 4, form tight clusters 
around their open loop positions. The primary fuselage 
bending mode poles, mode 2, follow the previously 
established movement pattern of increased damping 
with decreasing b along what is essentially a constant 
frequency. There is also movement from the rigid body 
poles with the amount dependent on the value of 
constant a. 

1.6 1 

-3 

-1.2 

-.4 

-.8 

-1.2 

-1.6 

. . .  . . .  a=1/15 . .  , . .a  , '  ,' .. : - 
. . . .  - 

M 

c( 2 

0 -2 -1.5 -1 -0.5 
Real 

Figure 9. Longitudinal + 4 modes w/ a changing. 

0 open loop 

+ b=10 
-1.2 a b=1/5 

'. * 
. .  . _  . ' . '  . . . . .  . . .  . .  . . . . . .  4 . . .  

. . . .  # . . . . . . . . . . .  OI(0 . .  . . . .  . - .  . .  . . .  . . .  . . . . .  * . .  : . . . .  . . . . . .  . . .  

-1.6 f b=1/8 I 

. . '  . . .  . .  
. .  . . . . .  . .  . . .  . . .  

-.4 I . . .  :'. . . . . .  I '  . ' .  .: i 0 

f 

0 ....++..........................ago 

-1.6 I I 
-1.5 -1 -0.5 0 

Real 
Figure 10. Longitudinal + 4 modes w/ b changing. 

Hence, the introduction of additional modes to the 
dynamics has not changed the observed general pattern 
of behavior from either rigid body or flexible dynamics. 
The additional flexible modes do not significantly alter 
the dependence of the primary flexible mode on the W 
time constant b, nor do they have a large influence on 
the interaction between rigid body and flexible mode 
dynamics. From the physics perspective of this 
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problem, this result is not surprising, since the 
additional flexible modes are primarily wing modes and 
are not significantly affected by the fuselage mounted 
control surfaces considered here. Similar behavior has 
been observed with a much higher number of elastic 
modes, some of which were fuselage modes, but 
beyond effective power of the controller. Thus it 
appears that a reasonable independence of control still 
exists for longitudinal plus flexible mode system 
dynamics under the dynamic inversion modification 
described in this paper. Granted this apparent 
separation exists in a perfect world, and once 
unmodeled dynamics as well as actuator dynamics are 
introduced the separation is not as clean, however, 
enough decoupling still exists to allow for a great deal 
of controller tuning to be done through W. 

The analytical expression for the transfer function 
matrix, not shown here, is no longer a diagonal set of 
integrators but instead is a fully populated matrix. This 
follows, as it did in SISO system, from the fact that 
introducing additional dynamics into the dynamic 
inversion loop precludes the pole-zero cancellation 
required to give the diagonal set of integrators. While 
not as elegant mathematically, this result allows control 
of flexible mode damping and thus tailor the 
disturbance response of the closed loop in addition to 
the commanded variable response. 
Adding uncertainty in flexible mode 

As with any control methodology, the issue of 
robustness must be addressed. The work in reference 6 
considered parametric uncertainty in the frequency and 
damping of the primary fuselage flexible mode. It was 
found that the modified dynamic inversion 
methodology produced a controller with good stability 
robustness to the indicated uncertainty. In this section, 
we revisit the dynamics discussed earlier in this paper 
and consider the effects parametric uncertainty in 
frequency and damping of a flexible mode has on the 
closed inner loop behavior of the system. 

Consider for clarity, the simplest available set of 
dynamics, those of short period plus 1 flexible mode 
described by equations 1 and 2, and introduce damping 
and frequency multiplicative uncertainty given below 

where A, E {S:ld I 1,6 E 31) 
where A5 E {&Id I 1,6 E 31) * 

u + 4 1  + A,) 

5 + dl + As)  

The closed loop dynamics associated with the 
standard dynamic inversion are given in equation 15. 
Note that the difference between nominal (eqn. 5 )  and 
perturbed closed loop system is in the f i  equation with 
appearance of 2 z  and W 2  terms. Both are dependent 
on the nominal frequency and damping as 

well as the introduced uncertainty (eqn. 15). 

112 a,+@, 
where W = (2d,) and 5 = 

( 2 d  

The transfer function of the closed inner loop 
dynamics, shown in equation 16, is no longer the 
integrator chain seen in equation 4. 

U 
S2+23%+Z2 1 

And the closed loop poles associated with the perturbed 
system are described in expression 17. 

112 {zw, 0, - ~ f ( W 2 ( ~ 2 - 1 ) )  } =  

Since the nature of the uncertainty did not change the 
open loop transmission zeros and this is a direct 
dynamic inversion, the first two poles coincide with the 
open loop transmission zeros as was seen earlier in 
expression 6. The two integrators, however, have 
changed into poles that are a function of 5 and W ,  
which are given in terms of their components in 
expression 17. As is evident from equation 15, the w 
internal dynamics remain independent of attitude 
dynamics and are only indirectly influenced by the 
flexible mode uncertainty through state variables and 
11 in the k equation. This is also confirmed by 
coincidence of transmission zeros with closed loop 
poles. 

The same observation holds for a full longitudinal 
system with a flexible mode. The closed loop dynamics 
of direct dynamic inversion are given in equation 18. 
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Again the difference between the nominal closed loop 
(eqn. 13) and the perturbed system resides in the 9 
equation with reappearance of 2@ and W 2  terms. 

1.0 ...... @$ ..... .*; * open nom 
. .  . 0 closednom 

.. : + A w = - ~ %  
' . - .  " ' +., 

. 
. .  

. .  
. . . . .  : + A ~ = - 1 0 %  

. '. . + A ~ = - 1 5 %  
. .  

. .  

. .  
. . .  . . . . . . .  : + A0=-20% . .  . .  

.' a,b=1/8,1/5 

1 yp"" +@'(23z$+W277) 

yp +A@'(2sW17+Z277) 

The transfer function of the closed inner loop 
dynamics, shown in equation 19, is very similar to the 
one for short period found in equation 16. There is no 
longer a chain of integrators present. However, in the 
limit as A, + 0 and Aa + 0 the chain of integrators, 
as seen in equation 4 is recovered. 

The first four closed loop poles, described in 
equation 20 correspond to open loop transmission zeros 
which is similar to the observed behavior of the short 
period system and show no dependence of internal 
dynamics on the uncertainty. The two remaining poles 
changed from dynamic inversion produced integrators 
to functions of uncertainty, again in a manner similar to 
the short period system. 

I k u - w dynamics, 0, 0, 

Thus when uncertainty is added into the direct 
dynamic inversion, whether the system is short period 
approximation or the full longitudinal model, the 
resulting closed loop dynamics are governed by the 
open loop transmission zeros and flexible mode 
uncertainty. This points to a potentially serious issue 

with stability of direct dynamic inversion. System 
stability is affected by uncertainty in the dynamics far 
separated in frequency from the dynamics that actually 
go unstable. In this case, flexible mode uncertainty 
could drive one of the dynamic inversion integrator 
poles unstable for large enough A, and A,. The 

existence of potentially unstable closed loop poles 
confirms the disadvantage of direct inversion especially 
with lightly damped dynamics of the flexible modes. 

For control design there are two question that are 
important to consider. The first is what happens for a 
given controller designed using the modified dynamic 
inversion as a range of uncertainty is considered. The 
second is does enough decoupling between the rigid 
body and flexible mode dynamics still exist so that time 
constants of the matrix W might be used to tune the 
controller. 

To answer the first question consider longitudinal 
dynamics with one flexible uncertain mode in the 
context of modified dynamic inversion. The plot in 
figure 11 illustrates the pole migration for changing 
frequency uncertainty while maintaining a constant 
damping uncertainty and a fixed value of a and b time 
constants of W. The frequency uncertainty is used 
because it has been found in previous work to be the 
driving factor. Also, the decreasing frequency of the 
flexible mode is causing instability that happens at low 
frequency. However, recall that the nature of ydes 
dynamics has a pronounced affect on the overall system 
stability that is not taken into consideration in this 
analysis. In reference 6, the low frequency dynamics 
were not as sensitive to uncertainty due to the use of 
second order filters in the W modification matrix. The 

r .  

. .  . . . .  
2 0 .e.. . . . . . . . . .  .......e+++ . .  . . .  A t  . .  . . . .  

. . .  . . . .  : X A-5% . .  
: . : X A0=10% , .  t .... . .  . ' : x A 0 = 1 5 %  

-0.75 -0.5 -0.25 0 0.25 0.5 
Real 

Figure 1 1. Closed loop poles for longitudinal + 1 
flexible mode w/ { a,b,A<] constant, Aqvaying. . 
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influence of second order filters is not discussed in this 
paper. 

To address the second question, consider again the 
longitudinal plus one flexible mode dynamics (eqn. 11) 
and apply modified dynamic inversion. In order to 
explicitly consider system uncertainty during the design 
phase, a controller is designed on a nominal system and 
then applied to a system perturbed in flexible mode 
frequency and damping. Once the uncertainty 
parameter boundaries are set, the affect of independent 
manipulation of the a and b time constants of the matrix 
W on the behavior of the closed loop system is 
explored. This behavior is illustrated in figures 12 and 
13. It is interesting to note that in figure 12 while a is 
varied with b fixed the rigid body poles move while the 
flexible mode remains completely stationary unlike the 
clustering observed in figure 7 where no uncertainty 
was present in the system. The low frequency rigid 
body pole also seems to be immune to the variation in 
a. This would imply that the closed 
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Figure 12. Longitudinal + 1 mode wl {AC,,Ao}={-20%, 

-50%) a changing, b=115, 1112.5. 

loop flexible mode associated poles are dominated by 
uncertainty and 6, unlike the nominal case where a had 
a minor influence. 

In figure 13, the time constant b is varied while a 
remains fixed. The results show the higher frequency 
rigid body dynamics remain fixed contrary to what was 
observed in figure 8 when no uncertainty was present. 
The flexible mode no longer follows the familiar 
pattern of changing damping along constant frequency. 
It now changes both frequency and damping with 
changing b. The low frequency rigid body pole also 
moves with changing b, becoming more unstable with 
smaller 6. 

. .  . . .  
1.2 

. . . .  . . . .  1 t . .  

t 7  , ,,,-::: . .  , I  
7 . .*a $, , 4.. ', . 8 . 

] ;' ,: . ' ; :  
.NQ ' . 4'4.' ; 6 

. . . .  . . . .  . . . .  . . . .  

. . .  . .  . .  . .  . . .  . . .  . . . . . .  . . , . .  
. . . .  . .  . . _. .  

. . . . .  ..... . .  

. . .  . . .  . .  
-1.2 

-2 -1.5 -1 -0.5 0 0.5 
Real 

Figure 13. Longitudinal + 1 mode wl {A<,Aw)={-20%, 
-50%) b changing, a=118,1115 

This observed behavior suggests that the presence 
of uncertainty overwhelms the influence of the 
modification matrix W on the low frequency rigid body 
dynamics. The effect on the controller design is 
somewhat limiting in that very low frequency dynamics 
must now be carefully considered when attempting to 
specify the desired flexible mode damping via the 
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adjustment of the b time constant of the matrix W. As 
previously mentioned, the problem is somewhat 
mitigated by the use of second order filters on the 
diagonal of W as well as the effect of the ydes 
dynamics on overall closed loop stability. 
Conclusion 

The modification introduced into the standard 
dynamic inversion methodology first discussed in 
reference 6 has been analytically explored on 
longitudinal and symmetric flexible dynamics of 
varying complexity. While the model used here is 
much simpler than the full model for which the 
controller introduced in reference 6 was designed, the 
results are revealing nonetheless. This paper begins to 
provide some analytical basis and further insight into 
the workings of dynamic inversion methodology that 
has been modified to address the problem associated 
with these large, flexible transports. 

There exists to a large degree freedom to control 
rigid body and flexible dynamics independently of one 
another in the modified dynamic inversion context. 
The apparent separation in controlling the short period 
and elastic mode dynamics through modified dynamic 
inversion is valuable when control of disturbances is as 
important as control of commanded variable. 
Specifically, the ability to alter the damping of elastic 
modes as well as cancel their response to the 
commanded vehicle motion is the main objective of an 
integrated flightlstructural mode control that is required 
for advanced, large, flexible aircraft. 

The increased complexity of system dynamics that 
included full longitudinal as well as multiple symmetric 
flexible mode dynamics show that certain degree of 
separation in controlling rigid body and flexible 
dynamics still exist. However, the introduction of 
parametric uncertainty into frequency and damping of 
the dominant flexible mode, also showed the coupling 
between very low frequency rigid body and flexible 
dynamics. This coupling must be carefully considered 
during a controller design process since in the real 
world application there are always uncertainty present 
in the system. In fact, the results presented in this paper 
have been used to design a series of controllers 
undergoing testing in real time piloted simulation. 
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